
Journal of Research and Innovation in Technology, Commerce and Management

Vol. 2 Issue 5, May 2025, pp. 2531-2534

ISSN: 3049-3129(Online)

2531 | P a g e w w w . j r i t m . o r g J R I T M

The Role of Web Assembly in High-

Performance Web Applications

Abhay Pal, Student, Bachelor of Computer Applications, Lovely Professional University,
Phagwara, abhaykingpal65@gmail.com

Cite as:

Abhay Pal. (2025). The Role of Web Assembly in High-Performance Web Applications.

Journal of Research and Innovation in Technology, Commerce and Management,

Volume 2(Issue 5), pp. 2531 –2534 https://doi.org/10.5281/zenodo.15372723

DOI: https://doi.org/10.5281/zenodo.15372723

Abstract

WebAssembly (Wasm) is a revolutionary

technology in web development, allowing

high- performance applications to match

native software in speed and efficiency.

This paper discusses the role of

WebAssembly in improving the

performance of web applications through a

portable, low-level binary format that runs

at near-native speeds. By reviewing its

architecture, use cases, and integration

with current web technologies, this

research points out how WebAssembly

closes the gap between web and native

performance. The study also looks at

existing limitations and suggests future

directions for its use in sophisticated,

resource-hungry applications. Findings

indicate that WebAssembly is a key tool for

the future of web-based software, giving

developers unprecedented flexibility and

power.

Keywords

WebAssembly, High-Performance Web

Applications, Wasm, JavaScript, browser

performance, Native Execution, Web

Development.

Research Objective

The main goal of this study is to assess the

effect of WebAssembly on high-

performance web application

development and performance. This

encompasses an examination of its

technical superiority over conventional

JavaScript-based implementations,

determination of principal use cases, and

consideration of its future ability to

redefine web development patterns.

I. Introduction

The web has moved from being a place for

static documents to an active environment

capable of hosting intricate applications

like video games, collaborative tools in real

time, and scientific simulations. Yet,

JavaScript, the most popular language on

http://www.jritm.org/
mailto:abhaykingpal65@gmail.com
https://doi.org/10.5281/zenodo.15372723
https://doi.org/10.5281/zenodo.15301400
https://doi.org/10.5281/zenodo.15301400

Journal of Research and Innovation in Technology, Commerce and Management

Vol. 2 Issue 5, May 2025

ISSN: 3049-3129(Online)

2532 | P a g e w w w . j r i t m . o r g J R I T M

the web, has traditionally had performance

limitations that have limited how native-

like it has been possible to deliver things in

the browser. WebAssembly, released in

2017 as a W3C standard, meets this

requirement by providing a compact binary

instruction format that executes at near-

native speeds in contemporary browsers.

In contrast to JavaScript, which is

interpreted or just-in-time compiled,

WebAssembly is intended for low-

overhead execution on a wide range of

hardware, making it suitable for

performance-critical code.

This paper explores how WebAssembly

improves web application performance, its

compatibility with current web

technologies, and its impact on developers

and end-users. Through an analysis of its

architecture and practical applications, we

seek to give a thorough overview of its

present function and future potential.

Review of Literature

WebAssembly's creation is a response to

the necessity of breaking JavaScript's

performance bottlenecks, especially for

computationally heavy operations. Early

attempts such as asm.js (a performance-

focused subset of JavaScript) paved the

way, but WebAssembly, initially published

in 2017 as a Minimum Viable Product

(MVP), represented a major step up (Haas

et al., 2017). Its binary form enables it to be

parsed and executed quicker than

JavaScript's text-based source code, with

its sandboxed execution model

guaranteeing security on browsers (W3C,

2021).

A study by Zakai (2018) identifies

WebAssembly's capability of running code

authored in programming languages such

as C, C++, and Rust, allowing developers to

bring high-performance software available

on the web. For example, game engines

such as Unity and Unreal Engine have

embraced WebAssembly to provide

console-level gaming experience through

browsers (Bright, 2020). Likewise, video

editing (e.g., FFMPEG.wasm) and machine

learning (e.g., TensorFlow.js with

WebAssembly backends) applications

illustrate its functionality (Herrera et al.,

2022).

Although it has its benefits, WebAssembly

is not a total substitute for JavaScript.

Research points out that it is better at CPU-

bound work but depends on JavaScript for

event handling and DOM manipulation

(Clark, 2019). Performance tests show that

WebAssembly can reach a speed of 80-90%

native, which is a considerable boost

compared to JavaScript's mixed

performance (Smith C Jones, 2021).

http://www.jritm.org/

Journal of Research and Innovation in Technology, Commerce and Management

Vol. 2 Issue 5, May 2025

ISSN: 3049-3129(Online)

2533 | P a g e w w w . j r i t m . o r g J R I T M

Nevertheless, issues like increased initial

binary sizes and fewer debugging tools

remain, as highlighted by Lee et al. (2023).

The literature underscores WebAssembly’s

growing adoption, with major browsers

(Chrome, Firefox, Safari, Edge) offering

robust support. Its role in high-

performance web applications is well-

documented, yet gaps remain in

understanding its long-term impact on

development workflows and user

experience.

Future Work

While WebAssembly has already

transformed web performance, its full

potential remains untapped. Future

research should focus on several key areas:

Tooling Improvements: Enhancing

debugging, profiling, and optimization

tools to streamline WebAssembly

development.

Broader Language Support: Expanding the

range of programming languages that can

compile to WebAssembly, beyond C, C++,

and Rust.

WebAssembly System Interface (WASI):

Investigating WASI’s role in enabling

WebAssembly to run outside browsers,

potentially unifying web and server-side

performance.

Integration with Emerging Technologies:

Exploring how WebAssembly can support

WebGPU for advanced graphics or WebRTC

for real-time communication.

Performance Optimization: Minimizing

binary size and startup latency to enhance

initial load times, a paramount

consideration for retaining users.

Furthermore, case studies on wide-scale

deployment across sectors such as finance,

health, and education might reveal greater

insights into real-world challenges and

advantages. With the progression of

WebAssembly, its standardization and

development of ecosystem will

increasingly determine its supremacy in

high-performance web apps.

Such integrations improve robustness and

adaptability in multilingual and domain-

specific scenarios.

Conclusion

WebAssembly is a paradigm shift in web

development, providing a solution to the

performance constraints of native web

technologies. Through support for near-

native execution speeds, it allows

developers to construct advanced

applications that were once limited to

desktop or mobile computing. Integration

with JavaScript guarantees compatibility

with the current web environment, while

its portability between devices improves

accessibility. While issues such as tooling

and startup times continue, continuous

improvements indicate that WebAssembly

will have a leading position in the next

generation of high-performance web apps.

This work confirms its relevance as a

connector between web and native

performance, opening the way to a more

powerful and useful internet.

http://www.jritm.org/

Journal of Research and Innovation in Technology, Commerce and Management

Vol. 2 Issue 5, May 2025

ISSN: 3049-3129(Online)

2534 | P a g e w w w . j r i t m . o r g J R I T M

References

1. Bright, P. (2020). "WebAssembly

Brings Unity and Unreal Engine to the

Browser." Ars Technica.

2. Clark, L. (2019). "JavaScript and

WebAssembly: Complementary

Technologies." Journal of Web

Development, 12(3), 45-60.

3. Haas, A., et al. (2017). "Bringing the

Web Up to Speed with WebAssembly."

Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language

Design and Implementation.

4. Herrera, D., et al. (2022). "Machine

Learning on the Web: WebAssembly's Role

in TensorFlow.js." IEEE Transactions on

Software Engineering, 48(5), 123-134.

5. Lee, J., et al. (2023). "Challenges in

WebAssembly Adoption: A Developer

Perspective." ACM Computing Surveys,

55(2), 1-25.

6. Smith, R., C Jones, T. (2021).

"Performance Benchmarks: WebAssembly

vs. JavaScript." Web Technology Review,

19(4), 78-92.

7. W3C. (2021). "WebAssembly Core

Specification." World Wide Web

Consortium.

8. Zakai, A. (2018). "Emscripten and

the Rise of WebAssembly."

Communications of the ACM, 61(9), 34-40.

http://www.jritm.org/

